High Absorption Magnesium supports healthy and normal bodily functions
High Absorption Magnesium contains elemental magnesium chelated with the amino acids glycine and lysine. It is a "di-peptide" chelate, which means that each magnesium atom is chelated with two amino acid molecules. It has a low molecular weight of 324 daltons, which is ideal for optimum absorption.
As an essential dietary mineral, magnesium plays many important roles, including:
- Magnesium helps support normal energy production in cells.
- Supports healthy nerve and muscle function.
- Helps maintain a normal, regular heartbeat.
- Supports healthy bone density
Maximizing absorption of Magnesium - Chelated Minerals Explained
Mineral absorption occurs mainly in the small intestine. Like any mineral, magnesium may be absorbed as an "ion," a mineral in its elemental state that carries an electric charge. Mineral ions cross the intestinal membrane either through "active transport" by a protein carrier imbedded in the cells lining the membrane inner wall, or by simple diffusion. The magnesium in mineral salts is absorbed in ionic form. However, absorption of ionic minerals can be compromised by any number of factors, including: 1) Low solubility of the starting salt, which inhibits release of the mineral ion, and 2) Binding of the released ion to naturally occurring dietary factors such as phytates, fats and other minerals that form indigestible mineral complexes.
A second absorption mechanism has been discovered for minerals. Experiments have shown that minerals chemically bonded to amino acids (building blocks of protein) are absorbed differently from mineral ions. This has given rise to the introduction of "chelated" minerals as dietary supplements. Mineral amino acid chelates consist of a single atom of elemental mineral that is surrounded by two or more amino acid molecules in a stable, ring-like structure.
Unlike mineral salts, which must be digested by stomach acid before the desired mineral portion can be released and absorbed, mineral chelates are not broken down in the stomach or intestines. Instead, chelates cross the intestinal wall intact, carrying the mineral tightly bound and hidden within the amino acid ring. The mineral is then released into the bloodstream for use by the body.